
Performance With a Purpose
The Advanced Message Processing System (AMPS), from 60East Technologies, is designed for the most demanding real-
world applications. Our engineers specialize in understanding technological innovations and using those innovations to
deliver consistent low-latency and high performance throughout an entire system. Multi-core processors make new levels of
performance possible. This briefing shows how you can use AMPS and shared memory to accelerate message enrichment in
your high-throughput, low-latency applications.

Shared Memory Messaging
Shared memory allows AMPS to move data between processes at sub-
microsecond latency. As the name suggests, the two processes work with
a common area of memory. In an ideal state, the processes run on the
same core, or cores in the same physical socket, so they are truly sharing
memory. However, shared memory works well even when sharing data
across processor sockets. Message transmission involves synchronization
and copying memory between cores or between sockets, operations
highly optimized at the hardware level. These copies have very low latency,
as shown by the Message Transport Latency graph, which measures the
time to publish a message from a client to AMPS. The AMPS engine helps
keep latency low through the entire system. The End to End Processing
Time graph shows latency from a shared memory client through AMPS
to another shared memory client. AMPS latency scales smoothly with
message size, and AMPS maintains consistent latency until message
throughput saturates the processing power of a single CPU.

Context is King
The numbers are impressive, but the test is how well real applications meet business needs. Most applications use a combination
of rapidly-changing information and more stable information. In an order processing application, the active orders, prices and
quantites vary millisecond by millisecond. Customer account numbers, ticker symbols, and catalog numbers are relatively stable.
To act on the quickly changing data, applications enrich messages—add additional data needed for processing—as part of the
message processing pipeline. The challenge is to enrich messages while keeping latency low in the overall system. Performance
in one part of the system doesn’t help if another part of the system can’t keep up.

Some applications require each client to enrich the message. This can
cause problems when each client has a different “version of the truth”, and
can also cause performance problems when clients need to update the
reference data. This may be the only option for systems that use multi-
cast messages or direct delivery to message processors. AMPS includes
sophisticated filtering and routing, so systems built with AMPS often create
enrichment processors that serve as a coherent point of enrichment.

Low-Latency Processing
For the most flexible message processing, you create a client program based on the AMPS API that receives a message,
enhances it, and then publishes it back to AMPS. To make this easy, there’s a simple pattern: messages include a field that says
whether a particular processor has enhanced the message. Each processing program uses filters using that field — for example,
the processor requests messages where /myStepDone = false. Once processing is done, the processor republishes the

0

1

2

3

4

50K 100K 150K 200K 250K 300K 500K 750K 1M 1.25M 1.5M 1.75M 2M

m
ed

ia
n
la
te
nc
y

(m
icr

os
ec
on

ds
)

messages per second

End‐To‐End Latency

16B 32B 64B 128B 256B 512B 1024B

0
50

100
150
200
250
300
350
400
450
500

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 15M 20M 25M

na
no

se
co
nd

s

messages per second

Message Transport Latency

16B 32B 64B 128B 256B 512B 1024B

publisher subscriber
qty=400
price=45.0
custId=12345
sku=3710345

qty=400
price=45.0
bill=333-3366
ticker=IBM
notify=jim@example.com

enrichment

TECHNICAL
FAST MESSAGE ENRICHMENT

Low-Latency Algorithmic
Message Processing ®

message to the same topic with/myStepDone = true. Subscribers use the filter /myStepDone = true, and only receive
processed messages.

Creating a shared-memory external processor is simple. You use
the AMPS C or C++ client libraries and change the server address
to use the shared memory protocol rather than TCP/IP. You then
update the configuration on the AMPS server to enable shared
memory. There are no other changes required to your code.

To get the best performance from shared memory, pay attention to
the CPU usage of the AMPS server and your application. In our labs,
latency increases by an order of magnitude if the CPU is saturated.
We recommend using numactl to bind the message processors to
the same NUMA node as the core AMPS functions if that node consistently uses less than 100% of the CPU capacity with these
processes on the same node. If the processors and AMPS will use the CPU capacity of the node, move processors to another
NUMA node so that the CPU capacity is consistently under 100% on all nodes. If the message processors use all of the CPU ca-
pacity on the machine, we recommend moving the lowest-priority processor to another machine and switching it TCP/IP.

Simple to Code
With AMPS, creating a shared memory processor is just as easy as creating a simple publisher or subscriber. The AMPS client
library handles all of the details of managing shared memory, including minimizing copies, polling, flow control, and so on. Your
code simply receives the messages and acts on them.

In-memory message processing pro-
vides all of the features of the AMPS
high performance engine, including
filtering by topic and content.

The sample here shows a simple
message handler. AMPS calls this
message handler for each message
received. The handler processes
the message and then sends the
processed message back to AMPS.
This is the basic receive and publish
loop common to all algorithmic
processors in AMPS. Notice that your
processor does not need to deal with
handling the shared memory. AMPS
takes care of those details for you.

With the AMPS client libraries, It’s
never been simpler to create high-
performance algorithmic processing.

Built to Scale, Built to Last
AMPS is in use in some of the most demanding applications in the financial industry. AMPS instances process billions of mission-
critical messages every day. When a single delayed or missed message means business disruption, you can rely on AMPS to do
the job.

Staffed by veterans of companies such as Morgan Stanley, Bank of America/Merrill Lynch, IBM, Microsoft, and Rogue Wave Soft-
ware, the 60East team provides unparalleled support with direct access to the development team.

For more information, visit our website or contact sales@crankuptheamps.com.

publisher

ampServer

algorithmic
processing

message
enrichment

shared
memory

shared
memory

Server

publisher

publisher

tcp/ip

tcp/ip

tcp/ip

subscriber

subscriber
tcp/ip

tcp/ip

void MessageHandler(const Message& message, void* userData) {

 try {

 // The subscribe call passes an AMPS client as the userData
 // to the function. Retrieve the client.

 AMPS::Client& client = * static_cast<AMPS::Client*>(userData);

 // Call a function that processes the incoming message and
 // returns an outgoing message. We use std::string here for clarity.
 // A production system would use a more optimized approach.

 std::string outMsg = parseAndProcess(message.getData());

 // Publish the message to an outgoing topic, using the provided client.

 client.publish("orders", outMsg);
 }
 catch (const AMPS::AMPSException& e) {
 std::cerr << e.ToString() << std::endl;
 exit(1);
 }
}

TECHNICALFAST MESSAGE ENRICHMENT
www.crankuptheamps.comRevision A

