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Fast Publish/Subscribe Solution

High Performance Content Filtering
• Filters resemble SQL-92 + Xpath
• Sub-microsecond processing latencies
• Capacity to do >1M messages/sec/core

Example subscription filters:

XML:
/FIXML/Order@Sym = “IBM” and 

/FIXML/Order/OrdQty@Qty >= 5000

FIX:
/55 = “IBM” and /35 in (‘D’, ‘C’)
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State of the World (Database)
• Content filtered queries
• Atomic query + subscribe
• Message deltas (both in and out)
• Focus Tracking

Analytics Engine (Real-time Aggregation)
• Casts one topic into another
• Parallel and lock-free design
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Analytics Engine (Real-time Aggregation)
• Projects one topic into another

o Think: Real-time SQL-92 “Materialized View”
Example:

• Project:  
o /11 as /customer
o /55 as /symbol
o sum(/14 * /99)/sum(/14) AS /vwap

• GroupBy:  /11, 55
• New Topic Name:  VWAP

This:
• 11=c01;55=INTC;14=1000;99=34.50;
• 11=c01;55=INTC;14=5000;99=34.75;
• 11=c01;55=INFA;14=100;99=18.75;

Becomes:
• customer=c01;symbol=INTC;vwap=34.70833;
• customer=c01;symbol=INFA;vwap=18.75;
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Presenter
Presentation Notes
Suggested points: Improvement in one area may run into limitations in another area. For example, we improve NUMA performance and saturate the network.  Also that it can be difficult to optimize for all of these things at once – much trickier than optimizing for just one.  For performance to be fast, you have to balance all of these. 

For example, if you’re I/O bound & you can burn some CPU cycles to get more I/O, you would do that. On the other hand, if your CPU is maxed out, that would be a bad performance tradeoff.



N
U

M
A A

RCHITECTU
RE(SAN

DYB
RIDG

E)

Presenter
Presentation Notes
Thoughts on talking points: this really is 2 two sockets with 8 cores on a physical layout, not 8 independent cores. Physical hardware matters for high-performance.
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Presenter
Presentation Notes
Thoughts on talking points:

This is a demanding application and a demanding performance test. We took a very demanding test and made it perform very well – all of our simpler tests perform well, too. 

The limit on 3.5 is NIC saturation, where the network can’t handle any more traffic.

This is tough to chart well because the charts don’t overlap. We were good before, but this is the kind of performance gain we needed to be NUMA aware to get.
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Presenter
Presentation Notes
Things to note: We allocate all latency critical processing threads on Node0 and set a prefer:0 allocation policy to force memory to fault into node 0 when they're space. We preallocate all critical structures at startup, so we rarely worry about latency sensitive stuff being allocated later in the lifetime of AMPS. Since all of the low latency critical data structures are 'faulted' to node0, we then run all of the latency critical threads on Node0. All other auxillary threads (thread monitoring, statistics collection/reporting, admins, etc) are run Node1. It's OK, but we want to minimize, memory references on Node0 from threads running on Node1. However, we never want to see memory on Node1 being referenced from threads on Node0. 
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Manual instrumentation using pieces in libnuma ("man numa")
set affinity
set allocation to prefer:0
look up node for datastructures with move_pages()

We do this in AMPS for assertion level debugging and guarding against 
regressions

Verification of all memory references using pintool
(http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool)

We have a pintool to watch cross node memory reads/writes from threads

We're trying to find the best way to share our pintools at the 
moment

Presenter
Presentation Notes
Ideas on talking points: all free and readily avialable.

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
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PMU tools (http://github.com/andikleen/pmu-tools)
have you ever run "sudo ./ocperf.py top"?  Mind blowing.
the csv lists shipped with pmutools have full list of available counters

numatop (http://01.org/numatop)
Early glimpse of tools of the future
great tool, requires a patch, but may make it into Linux 3.9 kernel.

Presenter
Presentation Notes
Ideas on talking points: Elaborate on mind blowing, encourage folks to try out numatop & give feedback

http://01.org/numatop
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• Experiment
• Read and Learn

o Dave Dice Blog
o https://blogs.oracle.com/dave/entry/numa_aware_reader_writ

er_locks
• Portable Hardware Locality (hwloc)

o lstopo – display system topology
o numactl – control NUMA policy
o numstat – observe cross-node memory requests   
o libnuma – control affinity of threads and memory 

• Design with non-uniform access in mind
o Locality of threads and memory is critical so design processing 

paths accordingly
o Try to reduce inter-package communication especially wrt

memory access pattterns
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Memory Channel Storage™ Architecture
Flash storage in DIMM package
Puts storage on memory bus
Low latency
Consistent performance
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Presenter
Presentation Notes
Talking point ideas:  
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Presenter
Presentation Notes
Ideas on talking points: This is plotted on a logarithmic scale because the jitter goes through the roof. The average latency is 3x worse, but the maximum latency is orders of magnitude worse.  Talking about overall throughput in terms of messages delivered per time might be interesting – each spike not only slows down that message, but also backs up everything behind it in the txlog.
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• Slides for this talk
• Slides and video links for previous talks
• Evaluation version of AMPS
• 60East blog

www.crankuptheamps.com

http://www.crankuptheamps.com/
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