

Low Latency meets Large Scale when you CRANK UP THE AMPS

Website:

www.crankuptheamps.com

Achieving Killer Performance with Storage, Networking and Compute in a NUMA World

PUSHING AMPS FURTHER

Jeffrey M. Birnbaumjmb@crankuptheamps.comWebsitehttp://crankuptheamps.com/

Fast Publish/Subscribe Solution

High Performance Content Filtering

- Filters resemble SQL-92 + Xpath
- Sub-microsecond processing latencies
- Capacity to do >1M messages/sec/core

Example subscription filters:

```
XML:
/FIXML/Order@Sym = "IBM" and
    /FIXML/Order/OrdQty@Qty >= 5000
```

FIX:
/55 = "IBM" and /35 in ('D', 'C')

State of the World (Database)

- Content filtered queries
- Atomic query + subscribe
- Message deltas (both in and out)
- Focus Tracking

Analytics Engine (Real-time Aggregation)

- Casts one topic into another
- Parallel and lock-free design

Analytics Engine (Real-time Aggregation)

- Projects one topic into another
 - Think: Real-time SQL-92 "Materialized View"

Example:

• Project:

- o /11 as /customer
- o /55 as /symbol
- o sum(/14 * /99)/sum(/14) AS /vwap
- GroupBy: /11, 55
- New Topic Name: VWAP

This:

- 11=c01;55=INTC;14=1000;99=34.50;
- 11=c01;55=INTC;14=5000;99=34.75;
- 11=c01;55=INFA;14=100;99=18.75;

Becomes:

- customer=c01;symbol=INTC;vwap=34.70833;
- customer=c01;symbol=INFA;vwap=18.75;

Machine (384GB)

NUMA ARCHITECTURE (Sandy Bridge)

Indexes: physical

-D-

Date: Tue 02 Apr 2013 10:41:22 AM EDT

PCI 15b3:1003

Manual instrumentation using pieces in libnuma ("man numa")

set affinity

set allocation to prefer:0

look up node for datastructures with move_pages()

We do this in AMPS for assertion level debugging and guarding against regressions

Verification of all memory references using pintool

(http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool)

We have a pintool to watch cross node memory reads/writes from threads

We're trying to find the best way to share our pintools at the moment

PMU tools (http://github.com/andikleen/pmu-tools)

have you ever run "sudo ./ocperf.py top"? Mind blowing. the csv lists shipped with pmutools have full list of available counters

numatop (<u>http://01.org/numatop</u>)

Early glimpse of tools of the future

great tool, requires a patch, but may make it into Linux 3.9 kernel.

	IN LITE	alor v1.0,	(C) 2012 IN	tel Corporat	100		
onitori	ng 304 processe	s and 428 th	nreads (int	erval: 5.0s)			
PID	PROC	RMA (K)	LMA (K)	RMA/LMA	CPI	*CPU%	
7111	mgen	33097.5	3.7	8835.4	89.61	3.1	
7113	numatop	0.2	0.5	0.3	1.53	0.0	
4510	irgbalance	1.5	1.2	1.3	1.17	0.0	
1289	kworker/9:1	0.0	0.0	0.8	1.22	0.0	
1	init	0.0	0.0	0.0	0.00	0.0	
2	kthreadd	0.0	0.0	0.0	0.00	0.0	
3	ksoftirgd/0	0.0	0.0	0.0	0.00	0.0	
4	kworker/0:0	0.0	0.0	0.0	0.00	0.0	
5	kworker/0:0	0.0	0.0	0.0	0.00	0.0	
7	kworker/u:0	0.0	0.0	0.0	0.00	0.0	
8	migration/0	0.0	0.0	0.0	0.00	0.0	
9	rcu bh	0.0	0.0	0.0	0.00	0.0	
10	rcu sched	0.0	0.0	0.0	0.00	0.0	
11	ksoftirgd/1	0.0	0.0	0.0	0.00	0.0	
Hotkey	for sorting:	1 (RMA), 2 (L)	(A), 3 (RMA/	LMA), 4(CPI)	, 5 (CPU%) -	>	
2U% = 5	ystem CPU utili	zation	estado socializado en		5.87955 575992777 5 .1.		

- Experiment
- Read and Learn
 - Dave Dice Blog
 - https://blogs.oracle.com/dave/entry/numa_aware_reader_writ er_locks
- Portable Hardware Locality (hwloc)
 - Istopo display system topology
 - numactl control NUMA policy
 - numstat observe cross-node memory requests
 - o libnuma control affinity of threads and memory
- Design with non-uniform access in mind
 - Locality of threads and memory is critical so design processing paths accordingly
 - Try to reduce inter-package communication especially wrt memory access pattterns

Memory Channel Storage™ Architecture
 Flash storage in DIMM package
 Puts storage on memory bus
 Low latency
 Consistent performance

Average Latency					
PCIe	86.09				
MCS	25.83				
Maximum Latency					
PCIe	113				
MCS	33				

15% Read Mix

Average Latency					
	PCIe	98.27			
	MCS	29.74			
Maximum Latency					
	PCIe	2382			
	MCS	58			

- Slides for this talk
- Slides and video links for previous talks
- Evaluation version of AMPS
- 60East blog

www.crankuptheamps.com

