¥ FLEXIBLE sAGmG
 SoL DATABASE
M ANALYTICS

www.crankuptheamps.com

Low Latency meets Large Scale

when you

Website:
@snsast

TECHNOLOGIES

http://www.crankuptheamps.com/

Achieving Killer Performance with
Storage, Networking and Compute in a
NUMA World

PUSHING AMPS FURTHER

Jeffrey M. Birnbaum
Website

4 BOEast

TECHNOLOGIES

mailto:jmb@crankuptheamps.com
http://crankuptheamps.com/

AMPS

topic A

y topic B
I

/Customerld,
SUM(Price * Quantity)
AS /Total

/Customerid IN /Total >
j @, 3,5, 7) 1000000

\

BOEast

TECHNOLOGIES

@
<
m
=0
<
m
=
o
T
>
<
O
W

Fast Publish/Subscribe Solution

High Performance Content Filtering
* Filters resemble SQL-92 + Xpath
 Sub-microsecond processing latencies
e Capacity to do >1M messages/sec/core

Example subscription filters:

XML:

/F1XML/Order@Sym = “IBM” and
/FIXML/0Order/0OrdQty@Qty >= 5000

FIX:

/55 = “IBM” and /35 in (“D”, “C?)

&) EO0East

TECHNOLOGIES

>
<
0
Wn
®
<
X
<
=

State of the World (Database)
e Content filtered queries
e Atomic query + subscribe

>
<
0
Wn
®
<
X
<
=

* Message deltas (both in and out)
 Focus Tracking

Analytics Engine (Real-time Aggregation)
e (Casts one topic into another
 Parallel and lock-free design

@susast
TECHNOLOGIES

Analytics Engine (Real-time Aggregation)
* Projects one topic into another
o Think: Real-time SQL-92 “Materialized View”
Example:

Project:

>
<
0
Wn
®
<
X
<
=

O /11 as/customer

0 /55 as /symbol

0 sum(/14 * /99)/sum(/14) AS /vwap
GroupBy: /11, 55
New Topic Name: VWAP

This:
e 11=c01;55=INTC;14=1000;99=34.50;

11=c01;55=INTC;14=5000;99=34.75;
11=c01;55=INFA;14=100;99=18.75;

Becomes:

customer=c01;symbol=INTC;vwap=34.70833;
customer=c01;symbol=INFA;vwap=18.75;

&) EO0East

TECHNOLOGIES

-
>
(@)
—I
O
>
»
=z
-
S
>0
2
O
0
<
>
=
O
o

Storage

Networ Viemory PL
| | | |

GbE
RDMA

NUMA FLASH

Presenter
Presentation Notes
Suggested points: Improvement in one area may run into limitations in another area. For example, we improve NUMA performance and saturate the network. Also that it can be difficult to optimize for all of these things at once – much trickier than optimizing for just one. For performance to be fast, you have to balance all of these.

For example, if you’re I/O bound & you can burn some CPU cycles to get more I/O, you would do that. On the other hand, if your CPU is maxed out, that would be a bad performance tradeoff.

Q achine (384GB)

Group0 [324GE) O3 PCI 19a2:0710

etho
MUMANMede P#0 (192GE)

Socket P20 PCI 19a2:0710
L2 (20MB) ethl
L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE) L2 (256KE)

—{— Pcl 1000:005k

L1(32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1(32KE) sda

L1(32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1 (32KE) L1(32KE)

—{— Pcl laed:2001

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#& Core P#7

—F PCI 8086:1521

FU P#O PUP#1 PUP#2 PU P#3 PU P#4 PUP#S PU P#& PU P#7 "
ethz2

FU P#1& PUP#17 PUP#1E PU P#13 PU P#20 PUP#21 PU P#22 PU P#23

PCl 8086:1521

eth3

MUMANMede P#1 (192GE)

PCl 8086:1521

P
C
>
>
)
@)
=
-
m
@]
—
-
)
m
n
>
P
Q
<
o
=
)
@
=

Socket P#1
eth4
L3 (20MB)
L2 (256KE) L2 [256KE) L2 (256KE) L2 (256KE) L2 (256KE) L2 [256KE) L2 (256KE) L2 (256KE) PCI 8086:1521
eths
L1(32KB) L1 (32KB) L1 (32KB) L1(32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1(32KB)
L1(32KB) L1 (32KB) L1 (32KB) L1(32KB) L1 (32KB) L1 (32KB) L1 (32KB) L1(32KB) —F {1 {1 {1 PCI 102b:0534
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6& Core PE#7 PCI B08&:1d02
PU P#8 PU P#9 PU P#10 PU P#11 PU P#12 PU P#13 PU P#14 PU P#15
PU P#24 PU P#25 PU P#26 PU P#27 PU P#28 PU P#29 PU P#30 PU P#31

[} Pci15b3:1003

Indexes: physical

Date: Tue 02 Apr 2013 10:41:22 AM EDT

Presenter
Presentation Notes
Thoughts on talking points: this really is 2 two sockets with 8 cores on a physical layout, not 8 independent cores. Physical hardware matters for high-performance.

-
S
)
=
O
3
<
>
=
0O
o
—
-
n
_|

AMPS

Matching

Flash
Storage

&) E0East

TECHNOLOGIES

Latency (microseconds)

80000

70000

60000

50000

40000

30000

20000

10000

Performance Comparison

AMPS 3.3

28330

36665

AMPS 3.5

|
|
|
|
|
|
|
|
|
|
|
|
|
|

10Gb NIC

Saturation \

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|

—
|

45000 53330 61665 159990 259995 360000 459990 559995 660000 759990 859995 960000 1059990

e \ax Values 3.3

99th Percentile 3.5

Messages Per Second

Max Values 3.5 == 99th Percentile 3.3

99.9th Percentile 3.3 === 99 9th Percentile 3.5

<z

BOEast

TECHNOLOGIES

o
=
—
m
=
X
M
wn
-
—
_|
wn

Presenter
Presentation Notes
Thoughts on talking points:

This is a demanding application and a demanding performance test. We took a very demanding test and made it perform very well – all of our simpler tests perform well, too.

The limit on 3.5 is NIC saturation, where the network can’t handle any more traffic.

This is tough to chart well because the charts don’t overlap. We were good before, but this is the kind of performance gain we needed to be NUMA aware to get.

Node 0 Node 1

critical data structures auxilliary threads

latency critical threads

avoid references

&)EOEast

TECHNOLOGIES

30NVS 13423S 3dI103Y 1VNIDIHQO 134903S 401 1SV3(09

Presenter
Presentation Notes
Things to note: We allocate all latency critical processing threads on Node0 and set a prefer:0 allocation policy to force memory to fault into node 0 when they're space. We preallocate all critical structures at startup, so we rarely worry about latency sensitive stuff being allocated later in the lifetime of AMPS. Since all of the low latency critical data structures are 'faulted' to node0, we then run all of the latency critical threads on Node0. All other auxillary threads (thread monitoring, statistics collection/reporting, admins, etc) are run Node1. It's OK, but we want to minimize, memory references on Node0 from threads running on Node1. However, we never want to see memory on Node1 being referenced from threads on Node0.

Manual instrumentation using pieces in libnuma ("man numa"
set affinity
set allocation to prefer:0
look up node for datastructures with move_pages()

We do this in AMPS for assertion level debugging and guarding against
regressions

Verification of all memory references using pintool

(http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool)

We have a pintool to watch cross node memory reads/writes from threads

We're trying to find the best way to share our pintools at the
moment

&) EO0East

TECHNOLOGIES

Presenter
Presentation Notes
Ideas on talking points: all free and readily avialable.

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

PMU tools (http://github.com/andikleen/pmu-tools)

have you ever run "sudo ./ocperf.py top"? Mind blowing.
the csv lists shipped with pmutools have full list of available counters

numatop (http://01.org/numatop)

Early glimpse of tools of the future

great tool, requires a patch, but may make it into Linux 3.9 kernel.

E? numatop sample

NumaTOPF wl1l.0, (C) 2012 Intel Corporation -

| Monitoring 304 processes and 428 threads (interwval: 5.0s3)

FID FROC RMA (K) LMA (K) MR/ IMA CPI *CPUR
B835.4
7113 numatop 0.2 5 1.3 1.53 1}
4510 irgbalance 1.5 1.2 1.3 1.17 0
1285 kworker/9:1 G.0). 0.8 1.22 1]
1 init 0.0 0.0 .0 00 0
2 kthreadd 0 10 1
3 ksoftirgd/(0.0 0.0 0.0 .00 0.0
4 leworker/0:(0.0 0.0 0.0 0. 00 0.0
2 kworker/0:0 0.0 0.0 0
T kworker/u:(0.0 0.0 0.0 0.00
B migration/(f i f
5 rcu_bh
10 rca_sched [
11 ksoftirgd/] .0 0.0 0.0 0.00
<= Hotkey for =sorting: 1(RMA), 2(LMA),6 3 (RMA/LMA), 4(CPI), S5(CPU%) =->
CEFU% = system CPU utiliration
D: Quit; H: Home; R: Refresh: I: IR Normalize; N: Nod -

&) EO0East

TECHNOLOGIES

._{
)
®)
—
W
0O
®)
Z
-
P
C
m
w)

Presenter
Presentation Notes
Ideas on talking points: Elaborate on mind blowing, encourage folks to try out numatop & give feedback

http://01.org/numatop

Experiment
Read and Learn

O
O

Dave Dice Blog

https://blogs.oracle.com/dave/entry/numa_aware_reader_writ
er_locks

Portable Hardware Locality (hwloc)

0]

O
O
O

Istopo — display system topology

numactl — control NUMA policy

numstat — observe cross-node memory requests
libnuma — control affinity of threads and memory

Design with non-uniform access in mind

)

)

Locality of threads and memory is critical so design processing
paths accordingly

Try to reduce inter-package communication especially wrt
memory access pattterns

&) EO0East

TECHNOLOGIES

=
-
<
>
—
m
O
I
=
O
-
m
W
>
=
O
—
@)
@)
—
wn

diablo
technologies

Memory Channel Storage™ Architecture

-
T
>
2
T
wn
-
)
P
>
@
m
m
<
@)
=
C
-
@)
p

Flash storage in DIMM package
Puts storage on memory bus
Low latency

Consistent performance

@snsast
TECHNOLOGIES

Latency in microseconds

120

100

80

60

40

20

Write-Only

ettt s

e PCle e VI CS

Average Latency
PCle

MCS

Maximum Latency
PCle
MCS

113
33

&

BOEast

TECHNOLOGIES

rm
<
O
=
-
-
O
P
O
<
-
T
>
»
I
Vg
_|
O
o
>
(0))
m

Presenter
Presentation Notes
Talking point ideas:

Latency in microseconds

(logarithmic scale)

10000

1000

100

10

15% Read Mix

e PCle e VI CS

Average Latency
PCle

MCS

Maximum Latency
PCle
MCS

2382
58

&

BOEast

TECHNOLOGIES

rm
<
O
=
-
-
O
P
O
<
-
T
>
»
I
Vg
_|
O
o
>
(0))
m

Presenter
Presentation Notes
Ideas on talking points: This is plotted on a logarithmic scale because the jitter goes through the roof. The average latency is 3x worse, but the maximum latency is orders of magnitude worse. Talking about overall throughput in terms of messages delivered per time might be interesting – each spike not only slows down that message, but also backs up everything behind it in the txlog.

15% Read/Write Ratio Overview GOEast

TECHNOLOGIES

216 2130 MB/sec 105 2243

_|
L
)
o
cC
D)
L
5
-
_l
X
-
wn
-
—
_|
wn

605 MB/sec
118

57.2
Transaction Publish Rate Mean Write Latency 99.99 Percentile Write Latency
millions/second microseconds microseconds
(higher is better) (lower is better) (lower is better)

mPCle mMCS

D) EOEast

TECHNOLOGIES

Slides for this talk
Slides and video links for previous talks

Evaluation version of AMPS
60East blog

-
O
=
<
O
=
m
=3
M
@)
=
<
>
-
@)
=

www.crankuptheamps.com

@susast
TECHNOLOGIES

http://www.crankuptheamps.com/

	Low Latency meets Large Scale�when you CRANK UP THE AMPS
	Pushing AMPS further
	Overview of AMPS
	AMPS Overview
	AMPS Overview
	AMPS Overview
	Factors in Performance
	NUMA Architecture (Sandy Bridge)
	Performance Test
	Killer Results
	60East Top Secret Original Recipe Secret Sauce
	Tools
	Tools, Continued
	NUMA Techniques and Tools
	Flash Storage Evolution
	Evolution of Flash Storage
	Evolution of Flash Storage
	Throughput Results
	For More Information

