
Low Latency meets Large Scale
when you CRANK UP THE AMPS

Website: www.crankuptheamps.com

http://www.crankuptheamps.com/

PUSHING AMPS FURTHER

Jeffrey M. Birnbaum jmb@crankuptheamps.com
Website http://crankuptheamps.com/

Achieving Killer Performance with
Storage, Networking and Compute in a
NUMA World

mailto:jmb@crankuptheamps.com
http://crankuptheamps.com/

O
VERVIEW

O
FAM

PS

Pub

Pub

Pub

Pub

AMPS
topic A

topic B

view C

/CustomerId,
SUM(Price * Quantity)
AS /Total

Sub Sub

State of
the

World

TX Log

Sub

/Total >
1000000

/CustomerId IN
(1, 3, 5, 7)

∆

State of
the

World

AM
PS O

VERVIEW

Fast Publish/Subscribe Solution

High Performance Content Filtering
• Filters resemble SQL-92 + Xpath
• Sub-microsecond processing latencies
• Capacity to do >1M messages/sec/core

Example subscription filters:

XML:
/FIXML/Order@Sym = “IBM” and

/FIXML/Order/OrdQty@Qty >= 5000

FIX:
/55 = “IBM” and /35 in (‘D’, ‘C’)

AM
PS O

VERVIEW

State of the World (Database)
• Content filtered queries
• Atomic query + subscribe
• Message deltas (both in and out)
• Focus Tracking

Analytics Engine (Real-time Aggregation)
• Casts one topic into another
• Parallel and lock-free design

AM
PS O

VERVIEW

Analytics Engine (Real-time Aggregation)
• Projects one topic into another

o Think: Real-time SQL-92 “Materialized View”
Example:

• Project:
o /11 as /customer
o /55 as /symbol
o sum(/14 * /99)/sum(/14) AS /vwap

• GroupBy: /11, 55
• New Topic Name: VWAP

This:
• 11=c01;55=INTC;14=1000;99=34.50;
• 11=c01;55=INTC;14=5000;99=34.75;
• 11=c01;55=INFA;14=100;99=18.75;

Becomes:
• customer=c01;symbol=INTC;vwap=34.70833;
• customer=c01;symbol=INFA;vwap=18.75;

FACTO
RS

IN
P

ERFO
RM

AN
CENetwork Memory StorageCPU

NUMA FLASHGbE
RDMA

Presenter
Presentation Notes
Suggested points: Improvement in one area may run into limitations in another area. For example, we improve NUMA performance and saturate the network. Also that it can be difficult to optimize for all of these things at once – much trickier than optimizing for just one. For performance to be fast, you have to balance all of these.

For example, if you’re I/O bound & you can burn some CPU cycles to get more I/O, you would do that. On the other hand, if your CPU is maxed out, that would be a bad performance tradeoff.

N
U

M
A A

RCHITECTU
RE(SAN

DYB
RIDG

E)

Presenter
Presentation Notes
Thoughts on talking points: this really is 2 two sockets with 8 cores on a physical layout, not 8 independent cores. Physical hardware matters for high-performance.

P
ERFO

RM
AN

CETEST

Host 1 Host 2

AMPS

Matching
Engine

P3

P4

P5

P2 P1

S1

S3
S2

Flash
Storage

K
ILLER

R
ESU

LTS

0

10000

20000

30000

40000

50000

60000

70000

80000

28330 36665 45000 53330 61665 159990 259995 360000 459990 559995 660000 759990 859995 960000 1059990

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Messages Per Second

Performance Comparison

Max Values 3.3 Max Values 3.5 99th Percentile 3.3

99th Percentile 3.5 99.9th Percentile 3.3 99.9th Percentile 3.5

10Gb NIC
Saturation

AMPS 3.3 AMPS 3.5

Presenter
Presentation Notes
Thoughts on talking points:

This is a demanding application and a demanding performance test. We took a very demanding test and made it perform very well – all of our simpler tests perform well, too.

The limit on 3.5 is NIC saturation, where the network can’t handle any more traffic.

This is tough to chart well because the charts don’t overlap. We were good before, but this is the kind of performance gain we needed to be NUMA aware to get.

60EASTTO
P

SECRETO
RIG

IN
ALR

ECIPESECRETSAU
CE

Node 1Node 0

critical data structures

latency critical threads

auxilliary threads

avoid references

prevent references

Presenter
Presentation Notes
Things to note: We allocate all latency critical processing threads on Node0 and set a prefer:0 allocation policy to force memory to fault into node 0 when they're space. We preallocate all critical structures at startup, so we rarely worry about latency sensitive stuff being allocated later in the lifetime of AMPS. Since all of the low latency critical data structures are 'faulted' to node0, we then run all of the latency critical threads on Node0. All other auxillary threads (thread monitoring, statistics collection/reporting, admins, etc) are run Node1. It's OK, but we want to minimize, memory references on Node0 from threads running on Node1. However, we never want to see memory on Node1 being referenced from threads on Node0.

TO
O

LS

Manual instrumentation using pieces in libnuma ("man numa")
set affinity
set allocation to prefer:0
look up node for datastructures with move_pages()

We do this in AMPS for assertion level debugging and guarding against
regressions

Verification of all memory references using pintool
(http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool)

We have a pintool to watch cross node memory reads/writes from threads

We're trying to find the best way to share our pintools at the
moment

Presenter
Presentation Notes
Ideas on talking points: all free and readily avialable.

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

TO
O

LS, C
O

N
TIN

U
ED

PMU tools (http://github.com/andikleen/pmu-tools)
have you ever run "sudo ./ocperf.py top"? Mind blowing.
the csv lists shipped with pmutools have full list of available counters

numatop (http://01.org/numatop)
Early glimpse of tools of the future
great tool, requires a patch, but may make it into Linux 3.9 kernel.

Presenter
Presentation Notes
Ideas on talking points: Elaborate on mind blowing, encourage folks to try out numatop & give feedback

http://01.org/numatop

N
U

M
A TECHN

IQ
U

ES
AN

D
TO

O
LS

• Experiment
• Read and Learn

o Dave Dice Blog
o https://blogs.oracle.com/dave/entry/numa_aware_reader_writ

er_locks
• Portable Hardware Locality (hwloc)

o lstopo – display system topology
o numactl – control NUMA policy
o numstat – observe cross-node memory requests
o libnuma – control affinity of threads and memory

• Design with non-uniform access in mind
o Locality of threads and memory is critical so design processing

paths accordingly
o Try to reduce inter-package communication especially wrt

memory access pattterns

FLASH
STO

RAG
EEVO

LU
TIO

N

Memory Channel Storage™ Architecture
Flash storage in DIMM package
Puts storage on memory bus
Low latency
Consistent performance

EVO
LU

TIO
N

O
FFLASH

STO
RAG

E

0

20

40

60

80

100

120

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Write-Only

PCIe MCS
Average Latency

PCIe 86.09
MCS 25.83

Maximum Latency
PCIe 113
MCS 33

Presenter
Presentation Notes
Talking point ideas:

EVO
LU

TIO
N

O
FFLASH

STO
RAG

E

1

10

100

1000

10000

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

(lo
ga

rit
hm

ic
 sc

al
e)

15% Read Mix

PCIe MCS

Average Latency
PCIe 98.27
MCS 29.74

Maximum Latency
PCIe 2382
MCS 58

Presenter
Presentation Notes
Ideas on talking points: This is plotted on a logarithmic scale because the jitter goes through the roof. The average latency is 3x worse, but the maximum latency is orders of magnitude worse. Talking about overall throughput in terms of messages delivered per time might be interesting – each spike not only slows down that message, but also backs up everything behind it in the txlog.

THRO
U

G
HPU

TR
ESU

LTS

FO
R

M
O

REIN
FO

RM
ATIO

N

• Slides for this talk
• Slides and video links for previous talks
• Evaluation version of AMPS
• 60East blog

www.crankuptheamps.com

http://www.crankuptheamps.com/

	Low Latency meets Large Scale�when you CRANK UP THE AMPS
	Pushing AMPS further
	Overview of AMPS
	AMPS Overview
	AMPS Overview
	AMPS Overview
	Factors in Performance
	NUMA Architecture (Sandy Bridge)
	Performance Test
	Killer Results
	60East Top Secret Original Recipe Secret Sauce
	Tools
	Tools, Continued
	NUMA Techniques and Tools
	Flash Storage Evolution
	Evolution of Flash Storage
	Evolution of Flash Storage
	Throughput Results
	For More Information

